
 1

The IDRISI

 Applications Programming Interface for

the TerrSet Geospatial Monitoring and

Modeling System:

A User’s Guide
Version 3.0 Clark Labs 2014

TerrSet has been designed as an OLE Automation Server using COM Object technology (i.e., a COM Server)1.

As a consequence, it is possible to use high-level development languages, such as Delphi, Visual C++, Visual

Basic, or Visual Basic for Applications (VBA) as macro languages for controlling the operation of TerrSet. In

addition, you can create sophisticated OLE Automation Controller applications that have complete control

over the operation of TerrSet.

The OLE Automation Server feature of TerrSet is automatically registered with Windows when TerrSet is

installed onto your system. Thus, if you have installed TerrSet, you automatically have access to the full API.

The IDRISI OLE Automation Server provides a wide range of functions for controlling TerrSet, including

running modules, displaying files, and manipulating TerrSet environment variables.

This guide is broken down into several sections:

1. Quick Start

2. Accessing the IDRISI API

3. API Methods and Properties

4. Using the API for Scripting Macros

5. Developing and Integrating New Modules

6. A VBA Example: Macro Scripting

7. A Delphi Example: Integrating a New Module

1 The API works with all 32-bit versions of IDRISI, including IDRISI Release One and Two, and IDRISI

Kilimanjaro.

 2

8. A Python Example

The first four sections are relevant to all users. Section 5 is of concern only to those who wish to extend the

functionality of TerrSet by creating their own modules. This includes information on how to add new items to

the menu system, how to have TerrSet monitor and display the progress of the module, and so on. Sections 6,

7 and 8 provide examples of how the API can be used. Note that these last three sections are instructive even

for those who are not familiar with these programming products.

1. Quick Start
The first step in using the IDRISI API is to register it with your programming environment. This typically takes

only a few moments, and is described in Section 2 below. After you have registered the API you then have the

ability to control most aspects of the operation of the TerrSet System. Here are some quick tips on getting

started:

• Once the IDRISI Library has been installed, any of the included IDRISI methods or properties can be

accessed by simply typing the name of the IDRISI object reference, followed by a period, followed by the

method or property name and its parameters. e.g.:

 Method Name Parameter

 IDRISI32.SetWorkingDir(“c:\data\”)

 IDRISI Object Reference

The IDRISI object reference is the name your programming environment uses to refer to the IDRISI

Automation Controller. It is established when you install the IDRISI Library (see below). Methods are

functions or procedures included in the automation controller library (i.e., operations that will cause some

action to take place), while properties are user-accessible settings (such as the path to the working folder).

• In most programming environments, you will notice that as soon as you finish typing the period after the

IDRISI32 object reference, you will be provided with a list of library functions from which you can

choose. Likewise, as soon as you type the open parenthesis after the function name, it will list all the

parameters required, as well as their data types.

• If you create a program that accesses the API and TerrSet is not currently running, Windows will

automatically launch it when needed.

• Section 3 contains a very long list of methods (functions and procedures) and properties (attributes). Most

users only need three or four! The most important method is RunModule. This is used to launch a

Terreet module, and uses the same list of parameters as a standard IDRISI macro. After this, most will

 3

find the DisplayFile method to be useful. As the name suggests, it is used to display a raster or vector

layer. Note that to add a layer to an existing composition, you should use AddLayerToDisplay. After

this, most users will only need one or all of the GetWorkingDir, GetResourceDirCount, and

GetResourceDir methods. These are used to determine the paths of the current working and resource

directories.

• The RunModule method has a wait option (that should normally be used) that causes your program to

wait until the TerrSet operation has finished before going on to the next line of your code. However, note

that the RunMacro method, as originally designed, does not have this. As a consequence, it will start the

macro, but immediately (i.e., without waiting for the macro to finish) return control to your program. A

method named RunMacroAndWait has been added that will wait until the macro has finished.

Alternatively, you can recode the macro into calls to RunModule within your program.

• The ModParams parameter of RunModule is identical to the macro command for the module being run,

with two exceptions. First, the “x” parameter of the macro command is not needed. Second, all file

references used with RunModule should use the full path and extension. For layers, the extension of the

main data file should be used (“.rst”, “.vct”, “.avl”) rather than that of its corresponding documentation

file. For example (using Visual Basic):

Dim CmdStr as String,Title as String,Units as String2

Dim Success as Integer

CmdStr=”5*c:\data\band4.rst*c:\data\band3.rst*c:\data\ndvi.rst”

Title=”Normalized Difference Vegetation Index”

Units=”NDVI”

Success = IDRISI32.RunModule(”Overlay”,CmdStr,True,Title,Units,””,””,True)

As an alternative to hard coding the path, consider using the API methods that access the working and

resource folders. For example:

Dim CmdStr as String,WrkPath as String,Title as String,Units as String

Dim Success as Integer

WrkPath = IDRISI32.GetWorkingDir

CmdStr = ”3*”+WrkPath+”band4.rst*”+WrkPath+”band3.rst*”+WrkPath+”ndvi.rst”

Title=”Normalized Difference Vegetation Index”

Units=”NDVI”

Success = IDRISI32.RunModule(”Overlay”,CmdStr,True,Title,Units,””,””,True)

2 Be careful declaring multiple variables with the same Dim statement in Visual Basic. If the data type is not

specifically indicated (as in this example) for any variable, it is implicitly declared as a variant. Thus, for

example, if this statement had read “Dim CmdStr,Title,Units as String”, only Units would be String – the other

two variables would be variants!

 4

• You may notice a few methods in the IDRISI Library that are not documented in Section 3. These are for

internal use by TerrSet only and should not be used in your programs.

• Also note that you can modify the TerrSet menu. The procedures for doing so are detailed in Sections 5

and 7. This allows you to incorporate menu entries for new modules you create.

 5

2. Accessing the IDRISI API
Any development language that supports OLE Automation (such as Delphi, C++, Visual Basic and VBA)

usually provides simple facilities to allow you to manipulate TerrSet. Included below are specific instructions

for using the API with Visual Basic, Visual Basic for Applications (VBA – found in all Microsoft Office

products such as Excel, Access and Word), and Delphi. In other cases, you should look in the help system for

the programming environment you are using under the name Automation Controller. TerrSet is an Automation

Server. Thus any program that accesses these methods and properties is called an Automation Controller.

Accessing TerrSet from VBA (in Word, Access, Excel)
From a Microsoft Office product, such as Word, Access or Excel, start the Visual Basic editor (usually found

under the Tools menu). Once you are in the VBA editor, go to the Tools menu and click on the References menu

item. This will launch a dialog in which you will see a list of all OLE Automation Servers registered on your

computer. If you have installed TerrSet, you will see a listing for IDRISI Library. Click the checkbox beside it to

make this server available. Then click on the OK button. You are now ready to begin programming TerrSet.

To access any of the library functions, simply type “IDRISI32” (without the quotes) followed by a period (“.”),

followed by the function name and its parameters. You will notice that as soon as you finish typing the period

after the IDRISI32 key word, VBA will provide a list of library functions from which you can choose. Likewise,

as soon as you type the open parenthesis after the function name, VBA will list all the parameters required, as

well as their data types. Similarly, VBA lists all IDRISI functions in its Object Browser.

Note that some of the variable types used in VBA are slightly different that those listed in the method and

property reference below. In VBA, the WideString type is simply String. Similarly the WordBool type is simply

Boolean. Use the data types as suggested by VBA in its Object Browser or code completion facility – these will

always be the correct types.

Accessing TerrSet from Microsoft Visual Basic
Accessing TerrSet from Microsoft Visual Basic is as simple as it is from VBA. For each project that needs to

access TerrSet, go to the Project menu and then the References item. This will launch a dialog in which you will see

a list of all OLE Automation Servers registered on your computer. If you have installed TerrSet, you will see a

listing for IDRISI Library. Click the checkbox beside it to make this server available. Then click on the OK

button. You are now ready to access TerrSet in your Visual Basic application.

To access any of the library functions, simply type “IDRISI32” (without the quotes) followed by a period (“.”),

followed by the function name and its parameters. You will notice that as soon as you finish typing the period

after the IDRISI32 key word, Visual Basic will provide a list of library functions from which you can choose.

 6

Likewise, as soon as you type the open parenthesis after the function name, Visual Basic will list all the

parameters required, as well as their data types. Similarly, Visual Basic lists all TerrSet functions in its Object

Browser.

Note that some of the variable types used in Visual Basic are slightly different from those listed in the method

and property reference below. In Visual Basic, the WideString type is simply String. Similarly the WoodBool

type is simply Boolean. Use the data types as suggested by Visual Basic in its Object Browser or code completion

facility – these will always be the correct types.

Accessing TerrSet from Delphi
The following information is specific to Delphi Version 5.0. For earlier versions, similar procedures exist.

However, you should refer to the help system of your specific version for details.

Step 1 : Installing the IDRISI Type Library (Do this once)

From the PROJECT menu in Delphi, select IMPORT TYPE LIBRARY. The find “IDRISI Library” in the

list of installed servers and select it. Then set the palette page to “Servers” and be sure the “Generate

Component Wrapper” checkbox is checked “on”. Then click on “Install”. You will then be asked which

package to install it into, with the default being “dclusr50.dpk”. This is the main Delphi component package.

Click on OK to signify that you do wish to install it to that package. You will then be presented with a dialog

about the contents of this library. Now click on “Compile”. You can now close this dialog – you will now have

access to the IDRISI Type Library in any Delphi project you create. NOTE : You will need to repeat this process if

you install an update to IDRISI32.EXE. This will replace the old type library with the new one.

Step 2 : Using the IDRISI Type Library (Do this for every new project)

Within any project that needs to access TerrSet, include the following “Uses” statement:

Uses IDRISI32_tlb;

Then declare an object of the IIdrisiApiServer class as follows:

 Var IDRISI32 : IIdrisiApiServer;

Then in your implementation section, declare the IDRISI API object as follows:

 IDRISI32:=CoIdrisiApiServer.Create;

 7

You can then access any property or method provided by TerrSet by referencing the IDRISI32 object,

followed by a period, followed by the method or property name and any required parameters. For example,

given a string variable named “Working_Folder”:

 Working_Folder:=IDRISI32.GetWorkingDir;

Finally, before allowing your application to terminate, signify to the API that you no longer need services as

follows:

 IDRISI32:=nil;

With this last operation you remove your process as a client of IDRISI32. This allows IDRISI32 to later be

terminated without concern that an application is present that still needs services.

Accessing IDRISI32 from Microsoft Visual C++
The following instructions apply to the use of the IDRISI32 API with Microsoft Visual C++ Version 6.

1. Go to the FILE | NEW menu option and click onto the PROJECT tab.

2. From the list of “new” options, select the MFC AppWizard (exe) option.

3. Specify the project location and name and then click OK.

4. In Steps 1 - 2 of the AppWizard dialog sequence, accept the defaults (or choose whichever options you

need).

5. In Step 3 of the AppWizard sequence there is a question about “What other support would you like to

include?” Make sure that the “Automation” option is selected to be on (i.e., it has a check mark).

6. In Steps 4 – 6 of the AppWizard sequence, accept the defaults (or choose whichever options you need).

Then click on the Finish and OK options to complete the process of initiating the application.

7. Now choose the VIEW | ClassWizard menu option and choose the Automation tab. Select the “Add

Class” button and then the “From a Type Library” option. You will then be presented with a file selection

dialog that is designed to look for a “.tlb” file (a type library). However, the Type Library for IDRISI32 is

contained in the IDRISI32.EXE executable. Therefore, change the file mask to indicate “Any file (*.*)”

and then locate the IDRISI32.EXE main program module in the TerrSet folder. Visual C++ will then

extract the header and implementation details of the IDRISI automation server and structure them within

standard C++ files: IDRISI32.h and IDRISI32.cpp. Click on OK to accept these details about the

specification of the IIdrisiAPIServer class. Then click on OK to exit the AppWizard dialog.

8. To access the IDRISI API, you will then need to register your application as a client of the IDRISI32

COM Server. Then after you have finished, you will need to unregister your application as a client. This is

done as follows:

 8

• Declare an object of type IIdrisiAPIServer.

• Call the CreateDispatch method of that object, passing the argument “IDRISI32.IdrisiAPIServer”.

• After all calls to the API, call the ReleaseDispatch method . e.g.,

IIdrisiAPIServer IDRISI; //create the API object

IDRISI.CreateDispatch(“IDRISI32.IdrisiAPIServer”); //call its interface constructor

CString wrkfolder=IDRISI32.GetWorkingDir(); //an IDRISI API call

IDRISI32.ReleaseDispath(); //release the interface reference

With this last operation you signify to the server that you no longer need services. This allows TerrSet

to be terminated without concern that an application is present that still needs services.

Accessing TerrSet from Python
Python is a portable, interpreted, object-oriented programming language meant to interface with TerrSet

through Windows COM Server technology. Programming knowledge is required to use the Python language

and syntax with its powerful built in high-level data types. Programs written in Python can be extended in a

systematic fashion by adding new modules implemented in a compiled language such as C or C++. Such

extension modules can define new functions and variables as well as new object types. Like any other COM

compatible programming language, Python is capable of accessing TerrSet’s COM Server and to control

TerrSet programming facilities.

The advantage of Python is that it is freely available software and can be downloaded from the Python website.

Complete details of Python extensive programming examples and help can be found at: www.python.org. As a

third-party software, the Clark Labs does not support this product nor is able to provide technical support for

any programs developed with Python.

Setting up Python

You will need to download and install the Python Windowss version, 2.7 or later. This can be installed from:

https://www.python.org/download. To access the COM API, the Python for Windows extension, Pythonwin,

is also required. This can be downloaded from: http://sourceforge.net/projects/pywin32/.

After installing Python and the Windows Extensions, it is possible to access Python’s command interpreter

directly from TerrSet or from Windows Start/Programs menu.

The following are some options for selecting Python’s command interpreter:

“IDLE (Python GUI)” (file: idle.pyw*)

“Python win” (file: Pythonwin.exe)

http://www.python.org/
https://www.python.org/download
http://sourceforge.net/projects/pywin32/

 9

* used in the examples in section 8.

Python can run in either interactive or programming modes. In interactive mode, Python offers a command

line prompt that can be used to call the IDRISI API. In programming mode, Python can run the same

commands but they are saved in a file (extension .py) to be run as a Python program. It is also possible to pass

parameters to access a graphical user interface for Python programs. More is available on this topic on the

Python website.

3. API Methods and Properties
The following is a list of the functions that are available to users. Note that the parameters are listed with the

data types as specified in Delphi. For Visual Basic and C++ there are slight differences (which will probably be

obvious) – Delphi’s WideString type is interpreted by Visual Basic as simply String; similarly the Delphi’s

WordBool type is interpreted as Boolean in Visual Basic. Likewise, in C++ Delphi’s Single is interpreted as

Float and Widestring is CString. When in doubt, use the syntax suggested by your language compiler.

For Directory/Project Info:
function GetWorkingDir: WideString;

 This function returns the user’s current working folder. The user’s current working folder name is

stored in that user’s current project file (.env file). You may need to append a backslash to the result. See also

GetResourceDir, Set_WorkingDir, SaveProjectToFile, and Get_CurrentProjectFileName.

function SetWorkingDir(const WorkingDir: WideString): WordBool;

 This function sets the default working data path for the current user. Make sure to append a

backslash to the end of the WorkingDir! (e.g. SetWorkingDir(‘c:\newworkingdir\’);) . This function currently

only changes the working folder in memory! It does not save it after the user exits TerrSet. To change and

save a working directory (recommended), call SetWorkingDir and then SaveProjectToFile (using the result of

Get_CurrentProjectfilename as input for SaveProjectToFile).

function GetResourceDirCount: Integer; safecall;

 In addition to a working directory, a user’s project file may also contain any number of resource

directories. This function returns the number of resource directories in the current project file. See also

GetResourceDir.

function GetResourceDir(ResIndex: Integer): WideString;

 10

 This function returns the path of the resource folder (in the current project file) specified by

ResIndex. Resource directories are stored by TerrSet in a list. You may obtain the name of any resource

directory in the list by using GetResourceDir and specifying the index of that directory in the list. To

enumerate all of the Resource directories, call GetReourceDirCount to determine the number of Resource

directories, and use GetResourceDir for each directory. Note that the resource dir list is not a zero-based list -

it starts at 1.

function AddResourceDirToProject(const ResourceDir: WideString): WordBool;

This function allows you to append a resource folder to the existing list of resource folders. The

ResourceDir parameter should include the entire path, including an ending backslash. This function returns

true or false depending on whether the operation was successful.

You may also want to look at SetWorkingFolder, SaveProjectToFile, and OpenProjectFromFile.

function RemoveResourceDirFromProject(const ResourceDir: WideString): WordBool;

 This function removes the specified resource folder (ResourceDir) from the project. See also

AddResourceDirToProject and GetResourceDir.

function RemoveAllResourceDirs: WordBool;

 This function removes all resource directories from memory. See also AddResourceDirToProject and

RemoveResourceDir.

function Get_CurrentProjectFileName: WideString; safecall;

 This function returns the name of the project file (.env file) that is currently active. It returns the full

path and filename with extension. If you need to change the working directory, use “setworkingdir”. If you

need to switch the entire project file and open another project file, see “Set_DefaultProjectFileName”. If you

want to save the current settings first before switching to another project file, use “SaveProjectToFile”.

procedure Set_CurrentProjectFileName(const Value: WideString); safecall;

 This procedure sets the name of the current default project. After you set this parameter, you must

call “OpenFromFile”. If you first want to save the current project file (.env) settings, see “SaveProjectToFile”.

This function is the same as Set_DefaultProjectFileName.

function OpenProjectFromFile(const FileName: WideString): WordBool;

 This function opens a new project. After calling this function, you need to call SetDefaultProjectFile.

For more information about projects, see Get_CurrentProjectFileName.

function SaveProjectToFile(const FileName: WideString): WordBool;

This function saves the current configuration (working folder / resource folders) to the current

project file. SetWorkingDir, AddResourceDirToProject, and RemoveResourceDir do not save to file. It is

 11

recommended that you call SaveProjectToFile after using any of those functions. For more information about

projects, see Get_CurrentProjectFileName.

function Get_ProgramDirectory: WideString;

 This function returns the name of the directory in which TerrSet is located. Note that TerrSet must

be running while this call is made.

function Get_GeorefDir: WideString;

This function allows you to determine the folder where a user's georeferencing files are stored. Full

path is returned (including the last backslash). Note that although the result is the typical repository for georef

files, these files can be also stored anywhere, including in the working path. (This situation is more likely when

the user is running a networked version of TerrSet.)

function Get_SymbolDir: WideString; safecall;

 This function returns the name of the symbol file folder (e.g., “C:\Program Files

(x86)\TerrSet\Symbols\”). Note that although most users will store their symbol files in this folder, symbol

files from any location (including the working path) can be used by TerrSet (this is particularly likely on a

networked version of TerrSet.).

function Get_WavesDir: WideString; safecall;

 This function returns the name of the Waves folder (e.g., “C:\Program Files (x86)\TerrSet\waves\”).

function Get_CartaLinxPath: WideString;

 This function retrieves the CartaLinx path, which is stored in the idrusers.ini file. Note that some

users may not CartaLinx, or may not have edited this setting.

procedure Set_CartaLinxPath(const Value: WideString);

 This procedure sets the CartaLinx path in the idrusers.ini file. Full path and filename are required.

function Get_BackgroundColor: WideString;

 This function retrieves the background color, which is stored in the idrusers.ini file. Note that the

background color can be set in user preferences in TerrSet.

procedure Set_ BackgroundColor (const Value: WideString);

 This procedure sets the background color path in the idrusers.ini file. Note that the background color

can be set in user preferences in TerrSet.

To Run Modules or Processes:

 12

function Run_Macro(const MacroFile, Parameters: WideString): Integer;

 Run macro, like the Run Macro dialog box, allows you to call a macro file (with optional parameters).

MacroFile is the name of the macrofile (including full path and extension). Parameters are only necessary if

variables are used in the macro file. Variables are identified by the percent sign and a number (such as %2)

Each parameter is separated by a space. Look in the help system under ‘Macro’ for more information.

function RunModule(const ModName, ModParams: WideString;

 WaitFlag: WordBool; const Title, Units, Extra1, Extra2: WideString;

 ProcAutoRemove: WordBool): Integer;

 This function calls an TerrSet module using command-line syntax. (Modules which can by run by

command line include modules in the TerrSet menu that are in all caps. Also, TerrSet File Explorer functions

such as copy, rename, and delete can be run using RunModule. Look at the command-line information under

TerrSet File Explorer’s Help).

 Parameters:

1. Modname: Module names and parameters for each module are provided in the help system.

2. Modparams: must contain the macro parameters specific to that module. These parameters are

specified in the help system. A quick way to get the module name and parameters is to call a

module from the TerrSet interface, fill out the desired settings, and then copy this information

from the IDRISI32.log file (located in the working directory).

3. Waitflag: determines whether the function will wait until the module is finished before your

program is to proceed.

4. Title: title for output file (where applicable)

5. Units: value units for the output file (where applicable).

6. Extra1: not used. Send an empty string: ‘’.

7. Extra2: not used. Send an empty string: ‘’.

8. ProcAutoRemove should be set to true.

RunModule will automatically report the progress of TerrSet modules in the progress status bar. You

do not need to call FreeProcess or TerminateProcess when RunModule is finished.

RunModule returns a Process ID. You can check on the state of the module by calling GetProgress

using the process ID.

function RunProcess(const modname, modparams: WideString;

 waitflag: WordBool; const title, units, extra1, extra2: WideString;

 ProcAutoRemove: WordBool; const DisplayParams: WideString): Integer;

 This function is similar to RunModule, but will automatically bring up the results when finished (IF

the user’s UseAutoDisplay setting is set to true). See RunModule for information about the first 8 parameters.

 13

DisplayParams is a widestring containing display parameters separated by the asterisk character (‘*’).

The parameters contained within DisplayParams are as follows:

1. Autodisplay the result? Set this to either “true” or “false”.

2. Filename (path and extension not necessary) of the file to be displayed.

3. Symbol filename (path and extension not necessary)

4. Layer type: “0”=image, “1”=vector.

5. Autoscale? “0”= don’t autoscale,”1”= autoscale. (If the image is real, it will ignore this

parameter and autoscale the image.)

6. Show the title? “1”=show title, “2”=don’t show title, “0”=use current user’s default settings for

title.

7. Show the legend? “1”=show legend, “2”=don’t show legend, “0”=use current user’s default

settings for legend.

8. Reserved. This parameter must be “0”

9. The final parameter must be “true”.

Example of displayparams string: “true*h87tm1*idris256*0*0*0*0*0*true”

function DisplayFile(const FileName, symbolname: WideString; LayerType,

 ScaleType, Title, Legend, Reserved: Integer; SilentLaunch: WordBool;

 const mapwindowname: WideString): Integer;

 This function displays FileName using the TerrSet display system. Filename should be the name of a

raster, vector, or map composition file. This filename can either be a short name (no path, no extension) if the

file is located in the current working or resource folder - or a fully - qualified filename. (Use the .rst, .vct, or

.map extension). The symbolname, likewise, can be a short name if it is located in the C:\Program Files

(x86)\Terrset\symbols folder in a working or resource folder. Symbol files must match the type of layer that

will be displayed. Raster files require a .smp file; vector files require a symbol file based on the type of layer

(.sm0 = point, .sm1=line, .sm2=polygon). For vector layers, if you specify “default” with no extension, TerrSet

will choose the appropriate default symbol file based on that layer. Map compositions do not require a symbol

file, so you may leave the symbolfile variable empty in this case.

LayerType is an integer variable which specifies the type of layer you are displaying. The values are as follows.

0=image file

1= vector file

2=map composition file (not implemented yet)

ScaleType determines whether the file will be autoscaled. 0=no autoscaling, 1=autoscaling.

The Title and Legend parameters instruct TerrSet whether or not to show the title and legend. In both cases,

0=use current user’s default settings, 1=true, and 2=false.

The Reserved parameter is not currently used; this value should be set to zero.

SilentLaunch should always be set to true.

The MapWindowname should be the same as FileName.

 14

function AddLayerToDisplay(const filename, symbolname: WideString;

 layertype, scaletype, nclasses: Integer): Integer;

 This function adds a layer to a currently displayed window. Filename should be the name of a raster,

vector, or map composition file. This filename can either be a short name (no path, no extension) if the file is

located in the current working or resource folder - or a fully - qualified filename. (Use the .rst, .vct, or .map

extension). The symbolname, likewise, can be a short name if it is located in the C:\Program Files

(x86)\TerrSet\symbols folder in a working or resource folder. Symbol files must match the type of layer that

will be displayed. Raster files require a .smp file; vector files require a symbol file based on the type of layer

(.sm0 = point, .sm1=line, .sm2=polygon). For vector layers, if you specify “default” with no extension, TerrSet

will choose the appropriate default symbol file based on that layer. Map compositions do not require a symbol

file, so you may leave the symbolfile variable empty in this case.

LayerType is an integer variable that specifies the type of layer you are displaying. The values are as follows.

0=image file

1= vector file

2=map composition file (not implemented yet)

ScaleType determines whether the file will be autoscaled. 0=no autoscaling, 1=autoscaling.

NClasses determines the number of classes to be displayed. Values range from 0 to 255

function AllocateProcess: Integer;

 If you intend to use TerrSet’s progress reporting, you must call AllocateProcess. This function

informs TerrSet that a process is starting. It then returns a process ID for that process. The process ID can be

subsequently used for progress reporting. (such as NotifyWorking, ProportionDone, SimplePass,

PassInProgress, and PassProportion) If you use AllocateProcess, you must call ProcessFinished, then

FreeProcess when your task is finished. These functions will ensure that your process cleans up after itself. If

you want to abort the process, call ProcessTerminated (instead of ProcessFinished) and then FreeProcess.

AllocateProcess is usually followed by a call to Set_Process_ModuleName.

function Set_Process_ModuleName(ProcID: Integer; const modulename: WideString): Integer;

 When you do AllocateProcess, you get a ProcId, and TerrSet begins to report your module’s progress,

but it doesn’t know the name of your module. On the status bar, or in the progress box, your module will not

have a name unless you use this function to set it.

function FreeProcess(ProcId: Integer): Integer;

 If you have created your own process (using AllocateProcess), you must call this function when your

process has finished running. This lets TerrSet know to free the process ID and stop showing progress reports

 15

for that process. Call ProcessFinished or ProcessTerminated before calling FreeProcess. See AllocateProcess

for more information.

function RaiseError(ProcId, ErrorCode: Integer; const Extra1,

 Extra2 : WideString): Integer;

 If you are reporting the progress status of your process (see AllocateProcess), and encounter an error

during your process, you can call RaiseError to report this error through TerrSet. The ProcID is the process

ID derived from your AllocateProcess call. The error code corresponds to an TerrSet error code (see

english.err). Extra1 and Extra2 might be required for the error code message. External applications might find

it more useful to create their own error messages (be sure to use ProcessTerminate and FreeProcess, however).

function RaiseWarning(ProcId, WarningCode: Integer; const Extra1,

 Extra2: WideString): Integer;

 If you are reporting the progress status of your process (see AllocateProcess), and want to

raise a warning message (without ending your process), you can call RaiseWarning to bring up the warning

message. The ProcID is the process ID derived from your AllocateProcess call. The error code corresponds to

an TerrSet error code (see english.err). Extra1 and Extra2 might be required for the error code message.

External applications might find it more useful to raise their own warnings.

function ProportionDone(ProcId: Integer; Proportion: Single): Integer;

 If you would like to report the progress status of your process (see AllocateProcess), this function

changes the TerrSet progress status bar. Progress reporting can exist in several formats: ProportionDone,

SimplePass, PassInProgress, PassProportion, and NotifyWorking.

ProportionDone will show a percentage on the status bar. (for example, “84%”). You must provide the

ProcessID (from AllocateProcess) and the proportion (in decimal format; for example “.84”).

Make a call to this function each time you want to update the status bar with the progress of your module.

function SimplePass(ProcId, CurrentPass: Integer): Integer;

 If you would like to report the progress status of your process (see AllocateProcess), this function

changes the TerrSet progress status bar. Progress reporting can exist in several formats: ProportionDone,

SimplePass, PassInProgress, PassProportion, and NotifyWorking.

SimplePass will show a pass number on the status bar (for example, “Pass 3”). You must provide the

ProcessID (from AllocateProcess) and the current pass number (An integer; in this instance “3”).

Make a call to this function each time you want to update the status bar with the progress of your module.

 16

function PassInProgress(ProcId, CurrentPass, MaxPasses: Integer): Integer;

 If you would like to report the progress status of your process (see AllocateProcess), this function

changes the TerrSet progress status bar. Progress reporting can exist in several formats: ProportionDone,

SimplePass, PassInProgress, PassProportion, and NotifyWorking.

PassInProgress will show a pass number (out of a given number of maximum passes) on the status bar (for

example, “Pass 3 of 4”). You must provide the ProcessID (from AllocateProcess) the current pass number

(An integer; in this instance “3”), and the maximum number of passes (an integer; in this instance, “4”).

Make a call to this function each time you want to update the status bar with the progress of your module.

function PassProportion(ProcId, CurrentPass, MaxPasses: Integer;

 Proportion: Single): Integer;

 If you would like to report the progress status of your process (see AllocateProcess), this function

changes the TerrSet progress status bar. Progress reporting can exist in several formats: ProportionDone,

SimplePass, PassInProgress, PassProportion, and NotifyWorking.

PassInProgress will show a pass number (out of a given number of maximum passes) on the status bar, as well

as the percentage finished for that pass (for example, “Pass 3 of 4, 20%”). You must provide the ProcessID

(from AllocateProcess) the current pass number (An integer; in this instance “3”), the maximum number of

passes (an integer; in this instance, “4”), and the proportion done (in decimal format; in this instance, “.20”).

Make a call to this function each time you want to update the status bar with the progress of your process.

function GetProgress(ProcId: Integer; var ProgressType, ErrorCode,

 WarningCode: Integer; var Proportion: Single; var CurrentPass,

 MaxPasses: Integer): Integer;

 This function allows you to query the progress of a specified process. For example, if you have used

RunModule (or RunProcess) to run an TerrSet module, you can use that processID to query the progress of

the module.

process status codes

 IDR_STATUS_FINISHED = 30;

 IDR_STATUS_ERROR = 31;

 IDR_STATUS_PROPORTIONDONE = 32;

 IDR_STATUS_SIMPLEPASS = 33;

 17

 IDR_STATUS_PASSINPROGRESS = 34;

 IDR_STATUS_PASSPROPORTION = 35;

 IDR_STATUS_WORKING = 36;

 IDR_STATUS_UNINITIALIZED = 37;

 IDR_STATUS_WARNING = 38;

 IDR_STATUS_TERMINATED = 40;

function NotifyWorking(ProcId: Integer): Integer;

 If you would like to report the progress status of your process (see AllocateProcess), this function

changes the TerrSet progress status bar. Progress reporting can exist in several formats: ProportionDone,

SimplePass, PassInProgress, PassProportion, and NotifyWorking.

Notify working will simply read “Working…” on the status bar. You must provide the ProcessID (from

AllocateProcess).

Make a call to this function each time you want to update the status bar with the progress of your module.

function ProcessFinished(ProcId: Integer): Integer;

 This function informs the progress reporting that a process (see AllocateProcess) has completed

successfully. If your module finishes (and does not RaiseError or ProcessTerminated), call this function, and

then call FreeProcess. It informs TerrSet that your process has finished cleanly. This is particularly important

if you are auto-displaying your output; the auto-display checks to see if a process has called this

ProcessFinished function. Note: If the process has finished unsuccessfully, call ProcessTerminated instead of

ProcessFinished.

See AllocateProcess for more information.

procedure ProcessTerminated(ProcID: Integer);

 ProcessTerminated informs TerrSet that a process (started by AllocateProcess) has finished, but has

been unsuccessful. It is important to call ProcessTerminated rather than ProcessFinished if the operation is

unsuccessful - particularly in those cases in which ProcessFinished would have displayed a result.

To get or set SystemInfo (project settings):
function Get_MainWindowState: Integer;

 This function retrieves the current state of the main TerrSet window. It should return one of the

following values:

 Normal=1

 Minimized=2

 Maximized=3

 18

procedure Set_MainWindowState(Value: Integer);

 This procedure will manipulate the state of the main TerrSet window interface. The values are as

follows:

1 = Normal

 2 = Minimized

 3 = Maximized

function GetIniString(const FName, Section, Key: WideString): WideString;

 This function calls the Windows API function GetPrivateProfileString. Fname is the name of the file

to open. Specify the Section and Keyname of the value that you would like to obtain. This function is not

TerrSet-specific.

function SetIniString(const Fname, Section, Key, NewString: WideString): WordBool; safecall;

 This function calls the Windows API function WritePrivateProfileString. Fname is the name of the

file to edit. Specify the Section and Key of the value (NewString) that you would like to change. This function

is not TerrSet-specific.

function Get_INIfilename: WideString;

 This function retrieves the path and name of the TerrSet initialization file.

function Get_CurrentProfileName: WideString;

 This function returns the name of the current TerrSet user.

function Get_UserINIfilename: WideString;

 This function returns the name of the TerrSet initialization file containing the user names.

function Get_HelpFileName: WideString;

 Get_HelpFileName returns the name of the TerrSet help file. This file is located in the TerrSet

program folder. When TerrSet is run for the first time, the help file is copied into the program folder.

function Get_Language: WideString;

This function allows you to determine the current user’s language preference for TerrSet. As of early

2000, English is the only language pack available for TerrSet, so this function will always return “English”.

procedure Set_Language(const Value: WideString);

 Sets the current user’s default language setting for TerrSet. The Value parameter should contain a

string with the name of the language. Note: The only language pack currently available is ‘English’.

 19

function Get_LangFileName(const section: WideString): WideString; safecall;

 This function returns the name of the TerrSet language file.

function Get_ImageDocExtension: WideString;

 This function returns the file extension for image documentation files. In TerrSet, this function

should always return “.rdc”.

function Get_ImageExtension: WideString;

 This function returns the file extension for image files. In TerrSet, this function should always return

“.rst”.

function Get_ValuesDocExtension: WideString;

 This function returns the file extension for attribute values documentation files. In TerrSet, this

function should always return “.vdc”.

function Get_ValuesExtension: WideString;

 This function returns the file extension for attribute values files. In TerrSet, this function should

always return “.avl”.

function Get_VectorDocExtension: WideString;

 This function returns the file extension for vector documentation files. In TerrSet, this function

should always return “.vdc”.

function Get_VectorExtension: WideString;

 This function returns the file extension for vector files. In TerrSet, this function should always return

“.vct”.

function Get_OverwriteProtection: WordBool;

This function determines whether the user has asked to be alerted if a file exists before overwriting it.

If Get_OverwriteProtection is true, in most instances TerrSet will bring up a warning message asking whether

or not to overwrite the file. You might want to incorporate the same logic into your program.

Note: when running TerrSet from command line parameters, the overwrite protection will be turned off.

function Get_AutoOutputPrefix: WideString;

This function returns the prefix that is used to automatically generate temporary files (in TerrSet the

default is “tmp”). See also GetNextAutoFileName.

 20

procedure Set_AutoOutputPrefix(const Value: WideString);

 Use this function to set the prefix for the automatically generated files. See also

GetNextAutoOutputName. Any changes to this setting will be saved permanently.

function Get_DefaultQualPal: WideString;

 This function returns the name of the user’s default qualitative palette. Note: this name may or may

not have a path and extension attached to it, depending where the user has chosen to store it.

procedure Set_DefaultQualPal(const Value: WideString);

 This procedure sets the user’s default qualitative palette preference. If the palette is in the TerrSet

Kilimanjaro/symbols directory, or in a working or resource directory, you do not need to specify a path or

extension. Any changes to this setting will be saved permanently.

function Get_DefaultQuantPal: WideString; safecall;

 This function returns the name of the user’s default quantitative palette. Note: this name may or may

not have a path and extension attached to it, depending where the user has chosen to store it.

procedure Set_DefaultQuantPal(const Value: WideString);

 This procedure sets the user’s default qualitative palette preference. If the palette is in the

C:\Program Files (x86)\TerrSet\symbols directory, or in a working or resource directory, you do not need to

specify a path or extension. Any changes to this setting will be saved permanently.

function Get_UseAutoDisplay: WordBool;

 This function determines whether the user has chosen to automatically display the output of analytical

modules. DisplayFile ignores this setting. Note: If you want to automatically display the output of a module,

use RunProcess instead of RunModule – but this UseAutoDisplay setting must be set to true!

procedure Set_UseAutoDisplay(Value: WordBool);

 This procedure sets a user’s preference for automatically displaying the output of analytical modules.

(DisplayFile ignores this setting.) Any changes to this setting will be saved permanently.

function Get_AutoShowLegend: WordBool;

 This function returns true or false depending on whether the user has chosen to automatically display

the legend during autodisplay functions. (DisplayFile ignores this setting.)

procedure Set_AutoShowLegend(Value: WordBool);

 This procedure sets the user’s AutoShowLegend setting. This setting determines whether or not to

display the legend in the autodisplay of analytical modules.

 21

function Get_AutoShowTitle: WordBool;

 This function returns true or false depending on whether the user has chosen to automatically display

the title during autodisplay functions. (DisplayFile ignores this setting.)

procedure Set_AutoShowTitle(Value: WordBool);

 This procedure sets the user’s AutoShowTitle setting. This setting determines whether or not to

display the title in the autodisplay of analytical modules.

Utilities:
function ShowTextResults(const Description, TextFileName: WideString): Integer; safecall;

 This function brings up a ‘results box’ in TerrSet. If your module has produced a text file which you

would like to display, call this module with the name (including full path and extension) of the text file you

would like to display. The Description parameter is the string which will come up in the banner of the results

box window.

The advantage of the using the results box (as opposed to edit) is that it has buttons which allow you

to save to file, save to clipboard, and send results to printer. This function returns the handle of the results

box.

function GetFromDocFile(const filename: WideString; ParamType: Integer;

 var ErrorCode: Integer): WideString; safecall;

This function allows you to access any element from an image documentation file. Parameters are:

• FileName : the image documentation file name

• ParamType : a numeric code for the parameter desired. Codes listed below:

• ErrorCode : a return error code (also used to specify additional parameters). A return value of 0 signifies

success, while negative values indicate that an error has occurred).

Codes for paramType:

1 = Title

2 = File type (0=ASCII / 1 = binary)

3 = Data type

return values for data type:

Integer=0

Real=1

Byte=2

RGB24=3

RGB8=4

 22

String=5

4 = Columns

5 = Rows

6 = Reference system

7 = Reference units

8 = Unit distance

9 = Minimum X

10 = Maximum X

11 = Minimum Y

12 = Maximum Y

13 = Minimum cell value

14 = Maximum cell value

15 = Value units

16 = Number of legend categories

17 = Legend caption (specify the legend category by means of the errorcode field)

18 = Legend code (specify the legend category by means of the errorcode field)

19 = Position error

20 = Reserved

21 = Resolution

22 = Reserved

23 = Value Error

24 = Reserved

25 = Flag value

26 = Flag definition

27 = Reserved

28 = Number of comment lines

29 = Comment line (specify the specific line by means of the errorcode field)

30 = Number of lineage lines

31 = Lineage line (specify the specific line by means of the errorcode field)

32 = Number of consistency lines

33 = Consistency line (specify the specific line by means of the errorcode field)

34 = Number of completeness lines

35 = Completeness line (specify the specific line by means of the errorcode field)

36 = Reserved

37 = Reserved

38 = Metadata version

39 = Display minimum

40 = Display maximum

 23

Note that all results passed to this function are sent as widestrings. It is up to the user to convert the string

(such as to an integer) as necessary.

function GetFromVecDocFile(const FileName: WideString; ParamType: Integer;

 var ErrorCode: Integer): WideString; safecall;

 This function allows you to access any element from a vector documentation file. Parameters are:

• FileName : the vector documentation file name

• ParamType : a numeric code for the parameter desired. Codes are listed below.

• ErrorCode : a return error code (also used to specify additional parameters). A return value of 0 signifies

success, while negative values indicate that an error has occurred).

Codes for paramType:

1 = Title

2 = File type (0=ASCII / 1=binary)

3 = Reserved

4 = Reserved

5 = Reserved

6 = Reference system

7 = Reference units

8 = Unit distance

9 = Minimum X

10 = Maximum X

11 = Minimum Y

12 = Maximum Y

13 = Minimum cell value

14 = Maximum cell value

15 = Value units

16 = Number of legend categories

17 = Legend caption (specify the legend category by means of the errorcode field)

18 = Legend code (specify the legend category by means of the errorcode field)

19 = Position error

20 = Reserved

21 = Resolution

22 = Reserved

23 = Value Error

24 = Reserved

 24

25 = Flag value

26 = Flag definition

27 = Reserved

28 = Number of comment lines

29 = Comment line (specify the specific line by means of the errorcode field)

30 = Number of lineage lines

31 = Lineage line (specify the specific line by means of the errorcode field)

32 = Number of consistency lines

33 = Consistency line (specify the specific line by means of the errorcode field)

34 = Number of completeness lines

35 = Completeness line (specify the specific line by means of the errorcode field)

36 = ID type (1=integer / 2=real)

37 =Feature type (geographic object type). 1=point, 2=line, 3=polygon, 4=text

38 = Metadata version

39 = Display minimum

40 = Display maximum

function GetFromValDocFile(const FileName: WideString; ParamType,

 FieldNum: Integer; var ErrorCode: Integer): WideString;

 This function allows you to access any element from a vector documentation file. Parameters are:

• FileName : the attribute values documentation file name

• ParamType : a numeric code for the parameter desired. Codes are listed below.

• FieldNum : the field number from which the metadata element should be retrieved.

• ErrorCode : a return error code (also used to specify additional parameters). A return value of 0 signifies

success, while negative values indicate that an error has occurred).

Codes for ParamType:

1 = Title

2 = File type (0=ASCII / 1 = binary / 2= fixed ASCII / 3= ACCESS)

3 = Data type

Return codes:

Integer=0

Real=1

Byte=2

RGB24=3

RGB8=4

String=5

 25

Access Long Integer=6

Access Short Integer=7

Access Single Precision Real=8

Access Double Precision Real=9

Access Text=10

4 = Minimum cell value

5 = Maximum cell value

6 = Value units

7 = Number of legend categories

8 = Legend caption (specify the legend category by means of the errorcode field)

9 = Legend code (specify the legend category by means of the errorcode field)

10 = Value Error

11 = Reserved

12 = Flag value

13 = Flag definition

14 = Reserved

15 = Number of comment lines

16 = Comment line (specify the specific line by means of the errorcode field)

17 = Number of lineage lines

18 = Lineage line (specify the specific line by means of the errorcode field)

19 = Number of consistency lines

20 = Consistency line (specify the specific line by means of the errorcode field)

21 = Number of completeness lines

22 = Completeness line (specify the specific line by means of the errorcode field)

23 = Reserved

24 = Reserved

25 = Metadata version

26 = Display minimum

27 = Display maximum

function AddToLogFile(const logstr: WideString): WordBool;

 This function adds logstr to the IDRISI32.log file. The log file is located in the current working

directory. This log file is for informational purposes only – there is no required format for logstr.

function ReadVLXFile(const FileName: WideString;

 var FileList: WideString): WordBool;

 This function reads a VLX (vector link file) and outputs a list of databases [?] associated with that link

file. If the function fails, it will return a result of false.

 26

function GetNextAutoFileName: WideString;

 This function will generate a default output file name. The automatically generated filenames are a

concatenation of the default output prefix (usually tmp) and a sequential three-digit number (between 000 and

999). function CalculateRasterMinMax(const filename: WideString; fileformat,

 datatype: Integer; var min, max: Double): Integer;

 This function calculates the minimum and maximum value for a given raster file. The filename must

include complete path and extension (.rst).

Fileformat values: (look at .rdc documentation file (or use GetFromDocFile) to determine the format of your

file.)

1=binary

2= packed

Datatype values: (look at .rdc documentation file (or use GetFromDocFile) to determine the datatype of your

file.)

0=integer

1=real

2=byte

the min and max parameters will return the min and max values of the raster file.

This function will return –1 if unsuccessful, otherwise it will return zero.

For RGB24 data, see CalculateRGB24MinMax.

function CalculateVectorMinMax(const filename: WideString;

 datatype: Integer; var min, max: Double): Integer;

 This function calculates the minimum and maximum value for a given vector file. The filename must

include complete path and extension (.vct).

Datatype values: (look at .vdc documentation file (or use GetFromVecDocFile) to determine the datatype of

your file.)

0=integer

1=real

2=byte

the min and max parameters will return the min and max values of the vector file.

 27

This function will return –1 if unsuccessful, otherwise it will return zero.

function CalculateAVLMinMaxRecs(const filename: WideString;

 datatype: Integer; var min, max: Double;

 var val_recs: Integer): Integer;

 This function calculates the minimum and maximum value for a given attribute values file. The

filename must include complete path and extension (.avl).

Datatype values: (look at .vdc documentation file (or use GetFromValDocFile) to determine the datatype of

your file.)

2=string

[need others]

the min and max parameters will return the min and max values of the vector file.

val_recs= the number of records (lines) in the values file.

This function will return –1 if unsuccessful, otherwise it will return zero.

function CalculateResolution(cols, rows: Integer; MinX, MaxX, MinY,

 MaxY: Double; var errcode: Integer): Double;

 This function calculates the resolution of a pixel, given the number of columns, number of rows, and

minimum and maximum X and Y. If errcode = 0, the function returns the result.

function VectorFileToTextFile(const vctfile, txtfile: WideString): Integer;

 This function converts a vector file to a vector export format file. The first parameter, vctfile, is the

name of the vector file (path and extension are optional). The second parameter, txtfile, is the name of the

output text file with extension (path is optional).

function CallVCTtoVXP(const vctfile, txtfile: WideString): WordBool;

This function converts an IDRISI vector file to a text file.

function CallVXPtoVCT(const txtfile, vctfile: WideString): WordBool;

 This function converts a text file to an IDRISI vector file.

 28

function CalculateRGB24minmax(const datafilename: WideString; var redmin,

 redmax, greenmin, greenmax, bluemin, bluemax: Integer;

 var combinedmin, combinedmax: WideString): Integer;

 This function calculates the minimum and maximum red green and blue values and the combined

minimum and maximum values for RGB24 raster data. Datafilename should be the full name of the raster file,

with path and extension (.rst). This function will return a zero value if it is successful.

function CalcVecMinMaxXY(const vecfilename: WideString; var minimumX,

 maximumX, minimumY, maximumY: Double): Integer;

 This function calculates the minimum and maximum X and Y boundaries for a given vector file.

Vecfilename should be the full path and filename (with .vct extension).

A result of zero means that the operation was successful.

4. Using the API for Scripting Macros
This is the simplest possible use of the API. In this case, one is primarily making calls to the RunModule,

RunMacro and DisplayFile methods. In addition, it is common to access one or more of the folder properties

and methods. Section 6 provides an illustration of this type of application.

Important Notes

• If TerrSet is not running when the script is run, TerrSet will be loaded automatically.

• Even if you are developing what seems to be a very simple macro, there are numerous pitfalls to

developing a clean macro script. If your macro uses loops, you should probably develop and test the

macro with only very simple loops (e.g., one iteration). Once you are certain that the logic works, then

change the number of iterations to reflect the actual number of loops desired.

5. Developing and Integrating New Modules
TerrSet has been especially designed to allow the user to extend its capabilities through the addition of new

modules. The menu is fully customizable, allowing you to add in your module as if it were a native element of

the TerrSet system. Here follow some brief instructions on how to integrate your module with TerrSet.

Modifying the Menu Structure

The TerrSet menu is not hard coded within IDRISI32.EXE, but rather, is created from a group of menu script

files (with an .Imn extension) that are located in the C:\Program Files (x86)\TerrSet\Extensions folder. As a

consequence, the menu is completely extensible and reconfigurable.

 29

Organizing these menu script files is a master file named Extensions.Lst. Extensions.Lst lists the menu

script files, and their order of appearance, in the menu. Each of the script files is an ASCII (text) file with an

.Imn (IDRISI Menu) extension that contains the menu entries and the corresponding DLL or EXE calls3.

When a user clicks on a menu item, TerrSet will call the DLL or EXE function given in the menu script file.

The structure of the Extensions.Lst is a simple list in ASCII (text) format. Each line lists a menu script (.Imn)

file (without its extension) in the order required to produce the final menu. The default Extensions.Lst that

comes with TerrSet contains the following:

SYSTEM

ANALYSIS

STATS

IMGPROC

DECISION

CHANGE

DATAEDIT

SURFANAL

HELP

The first 2 lines of an .Imn file give general information about the extension:

EXTENSIONNAME Basic Analysis //Must be set

HELPFILE ANALYSIS.HLP //use "" if no help file

The next section contains the Action List. The name to the left of the equal (=) sign is the Action Name. To the

right of the equal sign is the name of the DLL or EXE, followed by the function name to call, followed by an

optional parameter. In the case of standard TerrSet dialogs, this last parameter is a number which refers to the

particular dialog within a DLL. Some of the dialogs are contained in the main executable (TerrSet) and are

referenced as such. Otherwise, a specific DLL or EXE is referenced. For example:

BEGINACTIONLIST

 ANALYSIS_EDIT=IDRISI32,Bringup_Edit

//Database Query

 ANALYSIS_RECLASS=ANALYSIS.DLL,LaunchExtensionModule,5000

 ANALYSIS_OVERLAY=ANALYSIS.DLL,LaunchExtensionModule,5001

3 For most IDRISI modules, the action invoked by the menu entry calls a dialog contained in a DLL. This

dialog subsequently calls an EXE file that executes the analytical operation specified.

 30

 ANALYSIS_CROSSTAB=STATS.DLL,LaunchExtensionModule,2005

//Mathematical Operators

 ANALYSIS_SCALAR=ANALYSIS.DLL,LaunchExtensionModule,5015

 ANALYSIS_TRANSFORM=ANALYSIS.DLL,LaunchExtensionModule,5016

 ANALYSIS_IMAGECALCULATOR=IDRISI32,BringUp_ImageCalc

ENDACTIONLIST

In this example, the Image Calculator and Edit operations are contained in the main TerrSet executable while

the others are contained in extensions DLL’s.

When integrating a user-developed module, the action list only needs to contain the name of the executable

(which must be found in the C:\Program Files (x86)\TerrSet\MODS folder). e.g.:

 ANALYSIS_IMAGEOMATIC=IMAGEOMATIC.EXE

After the actionlist is the description of the order and location of the menu items themselves. The menu is a

hierarchical structure, with submenus identified by the word branch. MenuBreak tells it to insert a separator

line. BEGINMENU starts this section; ENDMENU completes it. Any BEGINBRANCH must have an

ENDBRANCH. Here is a shortened version of the last section of the ANALYSIS.IMN file:

BEGINMENU

 INSERTIONDEPTH 1 //use zero if top level menu item

 IdrMenuAnalysis //caption of menu item to be inserted under

 ITEMNAME ANALYSISMENUDatabaseQuery

 ITEMCAPTION Database Query //caption of first item

 ACTION 0 //this one does no action so its action code is zero

 HELPCONTEXT 0 //'0' means not yet linked

 BEGINBRANCH

 ITEMNAME ANALYSISMENUReclass //Any unique name that makes sense

 ITEMCAPTION RECLASS //This is what appears in the menu

 ACTION ANALYSIS_RECLASS //This refers to the action list above

 HELPCONTEXT 0

 ITEMNAME ANALYSISMENUOverlay

 ITEMCAPTION OVERLAY

 ACTION ANALYSIS_OVERLAY

 HELPCONTEXT 0

 31

 ITEMNAME ANALYSISMENUCrosstab

 ITEMCAPTION CROSSTAB

 ACTION ANALYSIS_CROSSTAB

 HELPCONTEXT 0

 MENUBREAK

 ITEMNAME ANALYSISMENUEdit

 ITEMCAPTION Edit

 ACTION ANALYSIS_EDIT

 HELPCONTEXT 0

 ENDBRANCH

 ITEMNAME ANALYSISMENUMathematicalOperators

 ITEMCAPTION Mathematical Operators

 ACTION 0

 HELPCONTEXT 0

 BEGINBRANCH

 ITEMNAME ANALYSISMENUOverlay2

 ITEMCAPTION OVERLAY

 ACTION ANALYSIS_OVERLAY

 HELPCONTEXT 0

 ITEMNAME ANALYSISMENUScalar

 ITEMCAPTION SCALAR

 ACTION ANALYSIS_SCALAR

 HELPCONTEXT 0

 END BRANCH

ENDMENU

Communicating with TerrSet

Through the IDRISI API, you can tell TerrSet that your process is running and have it report the progress of

your module as it does for standard TerrSet modules. Below we list a description of the functions that you are

most likely to use to make your module communicate with TerrSet.

 32

First you use the function AllocateProcess to let TerrSet know that you have a process that will be reporting

its progress. AllocateProcess returns an integer value, which is the ProcessID. You will need the ProcessID

for the other progress reporting functions.

You then call Set_Process_ModuleName to set the module name (for the ProcessID you were just given) to

be displayed on the status bar.

As your process runs, you can report its progress with one of the following procedures: Proportion Done

(percentages), SimplePass (e.g. pass 1, pass 2, etc.), PassInProgress (e.g. Pass 1 of 3), PassProportion (Pass

3 of 4, 20%), or NotifyWorking (working…). The progress reports for your process will appear on the status

bar and in the Progress Box (if the user has it open).

If your process finishes successfully, call ProcessFinished to notify the progress reporting to clear out that

module, then FreeProcess, to free up the ProcessID.

If your process has an error, you can use our error reporting procedures: RaiseError or RaiseWarning, or

you can show your error messages with your own procedures (e.g. MessageBox). If you use our methods for

error handling, the error will be recorded in the IDRISI32.log file. However, you will need to add your error

message to english.err or english2.err. We recommend that you just handle the errors yourself, since the

language files will be constantly changing and if you try to alter them and distribute an altered file, you may not

have the most up-to-date language files.

If your program finishes prematurely because of an error, call ProcessTerminated instead of

ProcessFinished, then call FreeProcess. (ProcessFinished would work fine though.)

In addition to running your own processes, you can run other TerrSet modules using either RunModule or

RunProcess. RunProcess is the same as RunModule except that it will autodisplay the resulting image or

vector file, and requires that you give it display information.

After you launch a module with RunModule or RunProcess, you can inquire about the progress of that module

using GetProgress. With this function you could run TerrSet in the background and report the progress of its

modules in your program.

6. A VBA Example: Macro Scripting
The following example illustrates the use of the IDRISI API for macro scripting. It presents a simple

illustration of what are known as a Cellular Automata (CA). A Cellular Automaton is an agent or object that has

 33

the ability to change its state based upon the application of a rule that relates the new state to its previous state

and those of its neighbors. Thus the main elements of CA applications include cells, states, neighborhoods and

rules. In this illustration of the Conway’s “Game of Life”, cells are the cells of a raster image, the states are

either “dead” or “alive” (0 or 1), the neighborhood consists of the 8 neighbors bordering each cell (known as

the “Moore Neighborhood” in the jargon of CA), and the rule is as follows:

 Cells remain/become alive if within their Moore Neighborhood:

• The cell is dead and there are three living neighbors

• The cell is alive and there are 2 or 3 living neighbors

• In all other cases, the cell dies or remains dead.

As is typical of most CA rules this logic can be implemented through iterative calls to the FILTER and

RECLASS modules. In this specific case, the FILTER and RECLASS modules are used to determine the

number of neighbors as follows:

• A user-defined 3 x 3 FILTER kernel with 10 in the center cell and 1 in all other cells is applied.

Since the input consists of boolean data (0/1 for dead/alive respectively), the result will consist

of cells with values between 1 and 8 if the center cell is dead and 11 and 18 if the center cell is

alive.

• RECLASS then establishes the next state as follows. Totals of 3, 12 of 13 result in the cell being

alive in the next state. All other values result in it being dead.

In order to run this script, two special files are required. The first is LIFE.RCL – a RECLASS file that specifies

the rule just described. The second is an image of the initial state of cells called START (START.RST and

START.RDC). All three of these files are included with this library in the self-extracting archive named

“VBA_Example.EXE”.

To use the following code, place the files previously mentioned (LIFE.RCL, START.RST and START.RDC)

into an accessible folder. This can be done by running the VBA_Example archive executable (from the Start

Menu Run … facility in Windows) with the name of the target folder to which these data files should be

extracted as a command line parameter (e.g., “VBA_Example c:\data”). Then run TerrSet and set the working

folder of the current project to the same folder. Then exit from TerrSet. This last step is not necessary, but will

be used to illustrate what happens when TerrSet is not running when the API is invoked.

Now start a new VBA project with a single form. Then add a button and a text box. The text box (TextBox1)

will be used to specify the name of the start image (using its simple name, without a path or extension). The

button (CommandButton1) will be used to execute the script. Then double click onto the button to move to

the CommandButton1_Click() subroutine. Then add the following code:

 34

Private Sub CommandButton1_Click()

Dim inname,outname,oldname,tmpname As String

Dim i,success As Integer

Dim prefix,suffix As String

prefix = IDRISI32.GetWorkingDir

oldname = Trim(TextBox1.Text)

suffix = ".rst"

oldname = prefix + oldname + suffix

success = IDRISI32.DisplayFile(oldname, "qual16", 0, 1, 2, 2, 0, True, oldname)

For i = 1 To 5

 inname = oldname

 tmpname = prefix + "tmpx" + suffix

 outname = prefix + "tmp" + Trim(Str(i)) + suffix

 success = IDRISI32.RunModule("filter", inname + "*" + tmpname +

"*6*1*1*1*1*10*1*1*1*1*0", True, "", "", "", "", True)

 success = IDRISI32.RunModule("reclass", "i*" + tmpname + "*" + outname +

"*3*"+prefix+"life.rcl", True, "", "", "", "", True)

 success = IDRISI32.DisplayFile(outname, "qual16", 0, 1, 2, 2, 0, True, outname)

 oldname = outname

Next i

End Sub

In this code example, the number of iterations is set to 5 – this can be changed as you wish, but should be set

to be very small until the program is debugged (i.e., change it to 1 to start). Finally, to test your program, run

the application and click on the button. Notice that Windows will automatically launch TerrSet if it is not

already running.

7. A Delphi Example: Integrating a New Module
This example module is called Batch_Macro – a utility that runs the specified macro on every layer designated

by a specific file mask (e.g., *.rst). It is a separate executable that communicates with TerrSet through the API.

For users who do not own Delphi 5, the primary Pascal source file (Batch_Macro32.pas) can be viewed with

any text file editor (such as NOTEPAD). In addition, the executable version of this file (Batch_Macro.Exe) has

been included with the code so that you can experiment with the installation and menu alteration procedure

regardless of whether you use Delphi 5.

 35

Installing the Sample Code

The Batch_Macro project code is contained in a self-extracting archive named Delphi_Example.Exe. This

executable should be run (from the Start Menu Run … facility in Windows) with the name of the target folder

to which the project should be extracted as a command line parameter (e.g., “Delphi_Example

c:\batch_macro_code”). Note that this archive also contains a copy of the final executable (Batch_Macro.Exe)

and a test macro (test.iml). If you do not intend on compiling the executable yourself, you should place the

executable into the C:\Program Files (x86)\TerrSet\MODS folder. The test.iml file should be placed in a

working folder containing other IDRISI raster images. The test macro simply makes a call to SCALAR to add

the value 1 to all cells in the image. These results are stored in new images based on a compound of the prefix

and the old name.

Compiling the Sample Code

The Batch_Macro project assumes that you have already imported the IDRISI type library into Delphi (see

Section 2). It will not compile until that has been achieved. The project is written in Delphi 5, and can be

compiled into an EXE using Delphi’s Build operation.

Operation of the Batch_Macro Module

This utility takes a standard IDRISI macro file and applies it to every file matching a specified wildcard mask in

the designated folder. The macro can consist of a single line or it can contain multiple lines. All that is required

is that there be at least two command line parameters – one for the input wildcard file mask (%1) and a second

which specifies the prefix to use for all output files (%2). We suggest that for testing you use a wildcard file

mask that will only result in a few files being processed.

Internal Processing Logic

The real work done by this module is all contained in the click event of the OK button. The general logic is as

follows:

1. Construct a list of all files that match the wildcard mask.

2. Read the macro file and create a new macro file that contains the same code for each input file. Thus, for

example, if the original macro contained 5 lines and 20 files matched the wildcard mask, the resulting

macro file would contain 100 lines – all now reworked to indicate specific files.

3. Cycle through the new macro file using the API call to RunModule to execute each operation.

API-Related Calls Used by Batch_Macro

• The main form of this project is Batch_Macro32. At the start of its implementation section it contains a

“Uses” statement to declare the IDRISI Type Library :

uses IDRISI32_TLB;

• Then it declares a global variable in the VAR section of the implementation of Batch_Macro32 to be used

as a reference for the interface of the IDRISI COM Server:

 36

IDRISI32 : IIdrisiAPIServer;

 Note that this causes TerrSet to increase its client reference count by one.

• Next it establishes itself as a client of TerrSet in the FormCreate method of the main form

(Batch_Macro32) as follows:

if IDRISI32 = nil then IDRISI32:=CoIdrisiAPIServer.Create;

 Note that at this point, Windows will load TerrSet if it is not already running.

• All remaining API-related calls are in the click event of the OK button. The first step is that Batch_Macro

establishes itself as a registered process of TerrSet:

ProcID:=IDRISI32.AllocateProcess;

IDRISI32.Set_Process_ModuleName(ProcID,'Batch_Macro');

 Once this has been done, TerrSet is prepared to track the progress of the module and to receive error

messages that it will report.

• As it processes macro calls, it sends progress report information and calls the appropriate TerrSet module

using the RunModule method:

IDRISI32.PassInProgress(ProcID,Kounter,Lines);

IDRISI32.RunModule(ModName,Cmdln,True,'','','','',True);

• After the processing of the macro is complete, it signals that it has completed and then unregisters itself as

an TerrSet process:

IDRISI32.ProcessFinished(ProcID);

IDRISI32.FreeProcess(ProcID);

• Finally, it removes itself as a client of TerrSet:

IDRISI32:=nil;

 Note that this causes TerrSet to decrement its client reference count by one.

Integrating Batch_Macro with TerrSet and its Menu

The last step is to integrate your module into the TerrSet system. If TerrSet is currently running, close it and

then complete the following steps:

1. Compile Batch_Macro and place the executable into the C:\Program Files (x86)\TerrSet\MODS folder.

2. Go to the C:\Program Files (x86)\TerrSet\EXTENSIONS folder and make a back up of the

SYSTEM.IMN file (call it “SYSTEM_IMN.BAK").

3. Now open the SYSTEM.IMN menu script for editing (using NOTEPAD or any other text editor). Find

the line in the Action List that reads:

SYSTEM_MACRO_RUNMACRO=IDRISI32,MACRO_RunMacro

 And then add a new line right after it that reads:

 SYSTEM_MACRO_BATCHMACRO=BATCH_MACRO.EXE

4. Then find the following sequence in the menu specification:

 37

ITEMNAME SYSMenu_MacroRunMacro

ITEMCAPTION Run Macro

ACTION SYSTEM_MACRO_RUNMACRO

HELPCONTEXT 0

 Then add right after it the following sequence:

ITEMNAME SYSMenu_MacroBatchMacro

ITEMCAPTION Batch Macro

ACTION SYSTEM_MACRO_BATCHMACRO

HELPCONTEXT 0

Your new module is now completely integrated into the TerrSet system. Launch TerrSet and you will notice the

Batch Macro entry in the file menu. Click onto the menu entry, and it should launch your module.

Other Important Notes

• The FormStyle property of the Batch_Macro32 form has been set to “fsStayOnTop”. Since the window

for this module is not a true child of TerrSet, this ensures that it will remain visible without disappearing

behind TerrSet when the focus is changed. However, note that there is a potential problem with this logic

– if other modules are running while your dialog is present and an error occurs, the error message will be

hidden by your dialog. Another approach is to use a modal form.

• Note that the Batch_Macro utility is only intended as an illustration. Although it works as described, it

does not contain all of the error handling characteristics of a normal TerrSet module.

• Clearly the derived macro could have been run with the RunMacro module. However, it was implemented

using iterative calls to RunModule for the sole purpose of providing progress reports (which RunMacro

intentionally does not do). The PassInProgress method was used, with the processing of each input file

constituting a pass. The progress report bar is then controlled by the module(s) called by each macro line.

• Developers: there are no restrictions on your use of the API, so long as any end-user is in possession of a

valid license of TerrSet. However, if your installation procedure involves the replacement of an existing

menu script file, we suggest that you provide an automatic backup facility and instructions on how to

install your addition manually.

10. A Python Example

Interactive Mode Example

We assume that Python 2.7 or later is installed. Open the Python shell window by clicking IDLE (Python GUI)

under Python 2.7 from the Windows start menu. Type the following scripts line by line after the Python

command prompt “>>>”, hit “Enter” at the end of each line.

 38

>>> import win32com.client

>>> IDRISI32 = win32com.client.Dispatch('IDRISI32.IdrisiAPIServer')

>>> IDRISI32.DisplayFile('sierra1.rst', 'greyscale')

0

>>> IDRISI32.DisplayFile('sierra345', '')

0

>>> IDRISI32.RunModule('SCALAR', 'sierra1.rst*tmpout.rst*1*12', 1, '', '', '', '', 1)

1

>>> _

Note: Green font represents the command typed by the user and black font to represents the feedback from

Python.

Some commands:

Activate the COM extension in Python:

import win32com.client

Activate the IDRISI API Server. Assign a name for the COM object for IDRISI API, for example, IDRISI32.

TerrSet will launch if it is not yet running:

IDRISI32 = win32com.client.Dispatch('IDRISI32.IdrisiAPIServer')

Call the DisplayFile API Function with a grayscale raster image:

IDRISI32.DisplayFile('sierra1.rst', 'greyscale')

If the raster file sierra1.rst is not in the working folder, the full path should be provided.

Call the DisplayFile API Function with a RGB24 raster image:

IDRISI32.DisplayFile('sierra345', '')

Call the RunModule API Function to run the SCALAR module:

IDRISI32.RunModule('SCALAR', 'sierra1.rst*tmpout.rst*1*12', 1, '', '', '', '', 1)

 39

Programmatic Mode Example

The following screenshot is an example of running the growth model found in the Introductory TerrSet

Tutorial set using Python’s programming language.

In the Python shell, open a new window by clicking File>New Window. Copy and paste the following script

into the new window, save it as growth.py into the same directory as the data. (If you change where you save

the file, make sure to modify the path in the script accordingly). To run press F5, or click Run>Run Module.

import win32com.client
import os

IdrApi = win32com.client.Dispatch('idrisi32.IdrisiAPIServer')

get current script dir
if data and the script are not in the same location,
comment out the next line and replace 'path' with directory of your data
path = os.getcwd()

set current working dir
#IdrApi.SetWorkingDir('D:/test/growth project')
IdrApi.SetWorkingDir(path)

inputImage = 'residential91.rst'
times = 5

for i in range(1, times+1):
 IdrApi.RunModule('FILTER', inputImage + '*proximity.rst*7*Filter2.fil*1', 1, '', '', '', '', 1)
 IdrApi.RunModule('RANDOM', 'random-seed.rst*1*2*landuse91.rst*2*0.02*0.01', 1, '', '', '', '', 1)
 IdrApi.RunModule('RECLASS', 'I*' + inputImage + '*non-residential.rst*3*Reverse.rcl', 1, '', '', '', '', 1)
 IdrApi.RunModule('OVERLAY', '3*ldressuit.rst*proximity.rst*downweight.rst', 1, '', '', '', '', 1)

 40

 IdrApi.RunModule('OVERLAY', '9*downweight.rst*random-seed.rst*combined-suit.rst', 1, '', '', '', '', 1)
 IdrApi.RunModule('OVERLAY', '3*combined-suit.rst*forest91.rst*suit-within-forest.rst', 1, '', '', '', '', 1)
 IdrApi.RunModule('OVERLAY', '3*non-residential.rst*suit-within-forest.rst*final-suitability.rst', 1, '', '', '', '', 1)
 IdrApi.RunModule('STRETCH', 'final-suitability.rst*rescaled.rst*1*min*max*N*256*unspecified', 1, '', '', '', '', 1)
 IdrApi.RunModule('RANK', 'rescaled.rst*none*ranked-suitability.rst*D', 1, '', '', '', '', 1)
 IdrApi.RunModule('RECLASS', 'I*ranked-suitability.rst*best-areas.rst*3*Growth.rcl', 1, '', '', '', '', 1)
 tmpFile = 'new-resid-' + str(i) + '.rst'
 IdrApi.RunModule('OVERLAY', '7*best-areas.rst*residential91.rst*' + tmpFile , 1, '', '', '', '', 1)
 IdrApi.RunModule('OVERLAY', '1*' + tmpFile + '*residential91.rst*growth-' + str(i) + '.rst', 1, '', '', '', '', 1)
 IdrApi.DisplayFile('growth-' + str(i) + '.rst', 'idris256');
 print 'run ', i
print 'done'

	The IDRISI
	Applications Programming Interface for the TerrSet Geospatial Monitoring and Modeling System:
	A User’s Guide

	1. Quick Start
	2. Accessing the IDRISI API
	Accessing TerrSet from VBA (in Word, Access, Excel)
	Accessing TerrSet from Microsoft Visual Basic
	Accessing TerrSet from Delphi
	Step 1 : Installing the IDRISI Type Library (Do this once)
	Step 2 : Using the IDRISI Type Library (Do this for every new project)

	Accessing IDRISI32 from Microsoft Visual C++
	Accessing TerrSet from Python
	Setting up Python

	3. API Methods and Properties
	4. Using the API for Scripting Macros
	Important Notes

	5. Developing and Integrating New Modules
	Modifying the Menu Structure
	Communicating with TerrSet

	6. A VBA Example: Macro Scripting
	End Sub

	7. A Delphi Example: Integrating a New Module
	Installing the Sample Code
	Compiling the Sample Code
	Operation of the Batch_Macro Module
	Internal Processing Logic
	API-Related Calls Used by Batch_Macro
	Integrating Batch_Macro with TerrSet and its Menu
	Other Important Notes

	10. A Python Example
	Interactive Mode Example
	Programmatic Mode Example

